Electrolyte Solution Calculation in Pharmacy



Electrolyte solution calculation is necessary to measure the electrolytes used to replace fluids and minerals (such as sodium, potassium) lost due to diarrhea and vomiting. It helps to prevent or treat the dehydration and important for the normal functioning of the body.


Electrolytes

- Substances that dissociate partly or completely in water yielding ions

- A solution that has ions can conduct electricity


Non Electrolytes

- Substances that dissolve in water without dissociating, rather they remain as molecules (not dissociated) 

- No ions, no conductivity 


Unit of Measurement

Electrolyte concentration can be expressed as:

  • Percent solutions (w/v)
  • Millimoles (mmol) and Micromoles (µmol)
  • Milliequivalents (mEq)
  • Milliosmoles (mOsmol)


Percent solutions

  • Weight in gm/ 100 ml volume of a solution (w/v)


Example

  • 5% Dextrose = 5 g dextrose in 100 ml solution


Millimoles and Micromoles

  • Mole= 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)/𝑀𝑊
  • Millimoles = 10˄-3 of a mole
  • Micromoles= 10˄-6 of a mole


Milliequivalent (mEq)

A chemical unit, the milliequivalent (mEq), is now used in USA by clinicians, physicians, pharmacists, and manufacturers to express the concentration of electrolytes in solution. It measures the total no. of ionic charges in solution, and it takes note of the valence of the ions. 

  • mEq= mg/equivalent weight

Where,

Equivalent weight = the amount of a substance that will either supply or react with one mole of hydrogen ions (H+) in an acid-base reaction; or supply or react with one mole of electrons in a redox reaction.

  • Equivalent weight= atomic, molecular or formula weight/valence


Thus,

  • mEq =  mg × valence/atomic, molecular or formula weight


Common Values for Some Important Ions


Osmolarity

  • Takes into account the number of particles of solute in the solution.
  • The unit of osmotic concentration is the milliosmole (mOsmol).

For example,

  • 1 mmole of NaCl = 2 mOsmol (Na+ + Cl-)
  • 1 mmole of CaCl2 = 3 mOsmol (Ca++ + 2Cl-)


mOsmol = 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)/𝑀𝑊 × number of species × 1000

= moles × number of species × 1000


Electrolyte Solution Calculation Example

1. What is the concentration in (mg/ml) of a solution containing 3 mEq of potassium chloride per milliliter? M.W. of KCl = 74.5

mg/ml = mEq/𝑚𝑙 𝑥 𝑎𝑡𝑜𝑚𝑖𝑐,𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟,𝑜𝑟 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 𝑤𝑒𝑖𝑔ℎ𝑡/𝑣𝑎𝑙𝑒𝑛𝑐𝑒

= 3 × 74.5/1

= 223.5 mg/ml


2. What is the percent (w/v) of a solution containing 100 mEq of Ammonium chloride per Liter? M.W. of NH4Cl = 53.5

mg/L = mEq/𝑚𝑙 𝑥 𝑎𝑡𝑜𝑚𝑖𝑐,𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟, 𝑜𝑟 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 𝑤𝑒𝑖𝑔ℎ𝑡/𝑣𝑎𝑙𝑒𝑛𝑐𝑒

= 100 𝑚𝐸𝑞/𝐿 𝑥 53.5/1

= 5350 mg/L

= 5.35 g/L

= 0.535 g/100 ml or 0.535 g%


3. A solution containing 10 mg/100mL of Ca++. Express the solution in terms of milliequivalent per liter (mEq/L). Atomic weight of Ca++ = 40

mEq/ml= (𝑚𝑔/𝑚𝑙 𝑥 𝑣𝑎𝑙𝑒𝑛𝑐𝑒)/𝑎𝑡𝑜𝑚𝑖𝑐,𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟,𝑜𝑟 𝑓𝑜𝑟𝑚𝑢𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡

= (10 𝑚𝑔/100𝑚𝑙 × 2)/40

= 0.5 mEq/100 ml

= 5 mEq/L


4. A patient is given 125 mg of phenytoin sodium (m.w. 274) three times a day. How many milliequivalents of sodium are represented in daily dose?

mEq = 𝑚𝑔 𝑥 𝑣𝑎𝑙𝑒𝑛𝑐𝑒/𝑎𝑡𝑜𝑚𝑖𝑐,𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟,𝑜𝑟 𝑓𝑜𝑟𝑚𝑢𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡

125 mg three times a day = 375 mg

mEq = 375 𝑥 1/274

= 1.37 mEq


Read also: 

Post a Comment

Previous Post Next Post